微分

定义

设函数y=f(x)y=f(x)在点x0x_{0}的某邻域U(x0)U(x_{0})内有定义,x0+ΔxU(x0)x_{0}+\Delta x \in U(x_{0}),如果函数增量Δy=f(x0+Δx)f(x0)\Delta y=f(x_{0}+\Delta x)-f(x_{0}),可表示为Δy=AΔx+o(Δx)\Delta y=A\Delta x+o(\Delta x),其中AA只和x0x_{0}有关,与Δx\Delta x无关,而o(Δx)o(\Delta x)是比Δx\Delta x高阶的无穷小,则称y=f(x)y=f(x)在点x0x_{0}可微,称AΔxA\Delta x为函数y=f(x)y=f(x)在点x0x_{0}相应于自变量增量Δx\Delta x微分,记作dydy,即dy=A(x)Δxdy=A(x)\Delta xdf(x)=AΔxdf(x)=A\Delta x

y=f(x)y=f(x)在区间II上每一点都可微,则称y=f(x)y=f(x)II上的可微函数,任一点的微分记作dy=A(x)Δx,xI(A(x)实际上就是f(x))dy=A(x)\Delta x,x \in I(A(x)实际上就是f'(x))

函数y=f(x)y=f(x)在点x0x_{0}可微\Leftrightarrowx0x_{0}点可导

常见微分公式及运算法则

  1. d(xn)=nxn1dx,n0d(x^n) = n x^{n-1}dx, \quad n \neq 0
  2. d(ex)=exdxd(e^x) = e^xdx
  3. d(ax)=axlnadxd(a^x) = a^x \ln adx
  4. d(lnx)=1xdxd(\ln x) = \frac{1}{x}dx
  5. d(logax)=1xlnadxd(\log_a x) = \frac{1}{x \ln a}dx
  6. d(sinx)=cosxdxd(\sin x) = \cos xdx
  7. d(cosx)=sinxdxd(\cos x) = -\sin xdx
  8. d(tanx)=sec2xdxd(\tan x) = \sec^2 xdx
  9. d(cotx)=csc2xdxd(\cot x) = -\csc^2 xdx
  10. d(secx)=secxtanxdxd(\sec x) = \sec x \tan xdx
  11. d(cscx)=cscxcotxdxd(\csc x) = -\csc x \cot xdx
  12. d(arcsinx)=11x2dxd(\arcsin x) = \frac{1}{\sqrt{1-x^2}}dx
  13. d(arccosx)=11x2dxd(\arccos x) = -\frac{1}{\sqrt{1-x^2}}dx
  14. d(arctanx)=11+x2dxd(\arctan x) = \frac{1}{1+x^2}dx
  15. d(arccotx)=11+x2dxd(\operatorname{arccot} x) = -\frac{1}{1+x^2}dx
  16. d(arcsecx)=1xx21dxd(\operatorname{arcsec} x) = \frac{1}{|x| \sqrt{x^2-1}}dx
  17. d(arccscx)=1xx21dxd(\operatorname{arccsc} x) = -\frac{1}{|x| \sqrt{x^2-1}}dx
  18. sinhx=exex2,d(sinhx)=coshxdx\sinh x= \frac{e^x-e^{-x}}{2},d(\sinh x) = \cosh xdx
  19. coshx=ex+ex2,d(coshx)=sinhxdx\cosh x= \frac{e^x+e^{-x}}{2},d(\cosh x) = \sinh xdx
  20. tanh=exexex+ex,d(tanhx)=sech2xdx\tanh=\frac{e^x-e^{-x}}{e^x+e^{-x}},d(\tanh x) = \operatorname{sech}^2 xdx
  21. arcsinhx=ln(x+1+x2),d(arcsinhx)=11+x2dx\operatorname{arcsinh} x=\ln(x+\sqrt{ 1+x^2 }),d(\operatorname{arcsinh} x)= \frac{1}{\sqrt{ 1+x^2 }}dx
  22. arccoshx=ln(x+x21),d(arccoshx)=1x21dx\operatorname{arccosh} x=\ln(x+\sqrt{ x^2-1 }),d(\operatorname{arccosh} x)= \frac{1}{\sqrt{ x^2-1 }}dx
  23. arctanhx=12ln1+x1x,d(arctanhx)=11x2dx\operatorname{arctanh} x= \frac{1}{2}\ln \frac{1+x}{1-x},d(\operatorname{arctanh} x)= \frac{1}{1-x^2}dx
  24. d(cothx)=csch2xdxd(\coth x) = -\operatorname{csch}^2 xdx
  25. d(sechx)=sechxtanhxdxd(\operatorname{sech} x) = -\operatorname{sech} x \tanh xdx
  26. d(cschx)=cschxcothxdxd(\operatorname{csch} x) = -\operatorname{csch} x \coth xdx

设函数u=u(x),v=v(x)u=u(x),v=v(x)均可微,则有

  1. d(u±v)=du±dvd(u\pm v)=du\pm dv
  2. d(uv)=vdu+udvd(uv)=vdu+udv
  3. d(Cu)=Cdud(Cu)=Cdu
  4. d(uv)=vdu+udvv2d\left( \frac{u}{v} \right)= \frac{vdu+udv}{v^2}

对于复合函数
y=f(u)y=f(u)u=φ(x)u=\varphi(x)都可导,则复合函数y=f[φ(x)]y=f[\varphi(x)]的微分为dy=yxdx=f(u)φ(x)dxdy=y_{x}'dx=f'(u)\varphi'(x)dx,由于du=φ(x)dxdu=\varphi'(x)dx,所以,也可写成dy=f(u)dudy=f'(u)du

可见,无论uu为自变量还是中间变量,微分形式dy=f(u)dudy=f'(u)du保持不变,这一性质称为一阶微分形式的不变性

高阶微分

函数y=f(x)y=f(x)的一阶微分为dy=f(x)dxdy=f'(x)dx,现将dydy只作为自变量xx的函数(把dxdx视为完全不变),此时若ff二阶可导,那么dydyxx的微分为d(dy)=d(f(x)dx)=d(f(x))dx=f(x)dxdx=f(x)(dx)2d(dy)=d(f'(x)dx)=d(f'(x))\cdot dx=f''(x)dx\cdot dx=f''(x)(dx)^2称之为函数ff的二阶微分,记作d2y=f(x)(dx)2d^2y=f''(x)(dx)^2d2y=f(x)dx2d^2y=f''(x)dx^2,一般地,nn阶微分是n1n-1阶微分的微分,记作dnyd^ny,即dny=d(dn1y)=d(f(n1)(x)dxn1)=f(n)(x)dxnd^ny=d(d^{n-1}y)=d(f^{(n-1)}(x)dx^{n-1})=f^{(n)}(x)dx^n

可以发现nn阶导数f(n)(x)=dnydxnf^{(n)}(x)= \frac{d^ny}{dx^n}可由nn阶微分推导得到

微分在近似计算中的应用

函数的近似计算

当函数y=f(x0)y=f(x_{0})在点x0x_{0}可微时,有Δy=f(x0)Δx+o(Δx)\Delta y=f'(x_{0})\Delta x+o(\Delta x),变形后可得f(x0+Δx)f(x0)+f(x0)Δxf(x_{0}+\Delta x)\approx f(x_{0})+f'(x_{0})\Delta x,即可用微分近似计算出函数值

x=x0+Δxx=x_{0}+\Delta x,即Δx=xx0\Delta x=x-x_{0},则有f(x)f(x0)+f(x)(xx0)f(x)\approx f(x_{0})+f'(x)(x-x_{0}),特别地,当x0=0x_{0}=0x|x|很小时,有f(x)f(0)+f(0)xf(x)\approx f(0)+f'(0)x

常用近似公式

  1. x+1n1+1nx\sqrt[n]{x+1}\approx 1+ \frac{1}{n}x
  2. sinxx\sin x \approx x
  3. tanxx\tan x\approx x
  4. ex1+xe^x\approx 1+x
  5. ln(1+x)x\ln(1+x)\approx x
    实际上是泰勒展开式的简化版

误差估计

设某个量的精确值是AA,它的由观测或计算得到的近似值为aa,那么Aa|A-a|叫作aa绝对误差(一个值),而绝对误差与a|a|的比值Aaa\frac{|A-a|}{|a|}叫作aa相对误差(一个比例)

在实际中有时能确定误差在某一范围内,设某个量的精确值是AA,测得它的近似值为aa,又知它的误差不超过δA\delta_{A},即AaδA|A-a|\leq\delta_{A},那么δA\delta_{A}叫作AA绝对误差限,而δAa\frac{\delta_{A}}{|a|}叫作AA相对误差限