导数

定义

y=f(x)y=f(x)在点x0x_{0}的某个邻域U(x0)U(x_{0})内有定义,x0+ΔxU(x0)x_{0}+\Delta x\in U(x_{0}),对于函数的增量Δy=f(x0+Δx)f(x0)\Delta y=f(x_{0}+\Delta x)-f(x_{0}),如果极限limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx\lim_{ \Delta x \to 0 } \frac{\Delta y}{\Delta x}=\lim_{ \Delta x \to 0 } \frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}存在,则称y=f(x)y=f(x)在点x=x0x=x_{0}可导有导数,或导数存在,此极限称为y=f(x)y=f(x)在点x=x0x=x_{0}导数,记作f(x0),y(x0),yx=x0,dydxx=x0,dfdxx=x0f'(x_{0}),y'(x_{0}),y'\Big|_{x=x_{0}},\frac{dy}{dx}\Big|_{x=x_{0}},\frac{df}{dx}\Big|_{x=x_{0}},即f(x)=limΔx0f(x0+Δx)f(x0)Δxf'(x)=\lim_{ \Delta x \to 0} \frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}

根据函数在点x0x_{0}处的导数f(x0)f'(x_{0})的定义,f(x0)=limh0f(x0+h)f(x0)hf'(x_{0})=\lim_{ h \to 0 } \frac{f(x_{0}+h)-f(x_{0})}{h}是一个极限,而极限存在的充分必要条件是左右极限都存在且相等,因此f(x0)f'(x_{0})存在即f(x)f(x)在点x0x_{0}处可导的充分必要条件是limh0f(x0+h)f(x0)h=limh0+f(x0+h)f(x0)h\lim_{ h \to 0^- } \frac{f(x_{0}+h)-f(x_{0})}{h}=\lim_{ h \to 0^+ } \frac{f(x_{0}+h)-f(x_{0})}{h}都存在且相等,这两个极限分别称为函数f(x)f(x)在点x0x_{0}处的左导数右导数,记作f(x0)f+(x0)f'_{-}(x_{0})及f'_{+}(x_{0})

左右导数统称为单侧导数

函数的求导法则

和、差、积、商

  1. (u±v)=u±v(u\pm v)'=u'\pm v'
  2. (uv)=uv+uv(u v)' = u' v + u v'
  3. (uv)=uvuvv2\left(\frac{u}{v}\right)' = \frac{u' v - u v'}{v^2}

反函数

x=φ(x)x=\varphi(x)单调、可导,且φ(y)0\varphi'(y)\neq 0,则其反函数y=f(x)y=f(x)存在且可导,有dydx=1dxdy\frac{dy}{dx}= \frac{1}{\frac{dx}{dy}},或f(x)=1φ(y)f'(x)= \frac{1}{\varphi'(y)},反函数的导数等于直接函数的导数的倒数

复合函数

(f(g(h())))=f(g(h()))g(h())h()(f(g(h(\dots))))' = f'(g(h(\dots))) \cdot g'(h(\dots))\cdot h'(\dots)\cdot\dots(链式法则)

常见函数导数

(xn)=nxn1,n0(x^n)' = n x^{n-1}, \quad n \neq 0
(c)=0(c)' = 0
(ex)=ex(e^x)' = e^x
(ax)=axlna(a^x)' = a^x \ln a
(lnx)=1x(\ln x)' = \frac{1}{x}
(logax)=1xlna(\log_a x)' = \frac{1}{x \ln a}
(sinx)=cosx(\sin x)' = \cos x
(cosx)=sinx(\cos x)' = -\sin x
(tanx)=sec2x(\tan x)' = \sec^2 x
(cotx)=csc2x(\cot x)' = -\csc^2 x
(secx)=secxtanx(\sec x)' = \sec x \tan x
(cscx)=cscxcotx(\csc x)' = -\csc x \cot x
(arcsinx)=11x2(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}
(arccosx)=11x2(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}
(arctanx)=11+x2(\arctan x)' = \frac{1}{1+x^2}
(arccotx)=11+x2(\operatorname{arccot} x)' = -\frac{1}{1+x^2}
(arcsecx)=1xx21(\operatorname{arcsec} x)' = \frac{1}{|x| \sqrt{x^2-1}}
(arccscx)=1xx21(\operatorname{arccsc} x)' = -\frac{1}{|x| \sqrt{x^2-1}}
sinhx=exex2,(sinhx)=coshx\sinh x= \frac{e^x-e^{-x}}{2},(\sinh x)' = \cosh x
coshx=ex+ex2,(coshx)=sinhx\cosh x= \frac{e^x+e^{-x}}{2},(\cosh x)' = \sinh x
tanh=exexex+ex(tanhx)=sech2x\tanh=\frac{e^x-e^{-x}}{e^x+e^{-x}}(\tanh x)' = \operatorname{sech}^2 x
arcsinhx=ln(x+1+x2),(arcsinhx)=11+x2\operatorname{arcsinh} x=\ln(x+\sqrt{ 1+x^2 }),(\operatorname{arcsinh} x)'= \frac{1}{\sqrt{ 1+x^2 }}
arccoshx=ln(x+x21),(arccoshx)=1x21\operatorname{arccosh} x=\ln(x+\sqrt{ x^2-1 }),(\operatorname{arccosh} x)'= \frac{1}{\sqrt{ x^2-1 }}
arctanhx=12ln1+x1x,(arctanhx)=11x2\operatorname{arctanh} x= \frac{1}{2}\ln \frac{1+x}{1-x},(\operatorname{arctanh} x)'= \frac{1}{1-x^2}
(cothx)=csch2x(\coth x)' = -\operatorname{csch}^2 x
(sechx)=sechxtanhx(\operatorname{sech} x)' = -\operatorname{sech} x \tanh x
(cschx)=cschxcothx(\operatorname{csch} x)' = -\operatorname{csch} x \coth x

函数的可导性和连续性之间的关系

若函数y=f(x)y=f(x)在点x0x_{0}可导,则必然在点x0x_{0}连续

隐函数求导

在方程F(x,y)F(x,y)中,当xx取某区间II内的任意一值时,相应地总有满足该方程的唯一的yy值存在,那么就说明方程F(x,y)=0F(x,y)=0在该区间II内确定了一个隐函数,若将他记为y=f(x),xIy=f(x),x\in I,则在II上有F[x,f(x)]0F[x,f(x)]\equiv 0

把一个隐函数化为显函数,即把yy解出来,写成自变量xx的显函数,叫作隐函数的显化

显化相关将在下册中提到

无须通过显化求导:若可导函数y=f(x)y=f(x)F(x,y)=0F(x,y)=0给定,则对恒等式F[x,f(x)]0F[x,f(x)]\equiv 0关于xx求导,通过复合函数求导法则解出yy'dydx\frac{dy}{dx},即得到隐函数的导数

由参数方程所确定的函数的导数

一般地,若参数方程

{x=φ(t)y=ψ(t)\begin{cases}x=\varphi(t)\\ y=\psi(t)\end{cases}

表示yyxx间的函数关系,则称此函数关系所表达的函数为由参数方程所确定的函数
设参数方程

{x=φ(t)y=ψ(t),αtβ;φ(x),ψ(x)\begin{cases}x=\varphi(t)\\ y=\psi(t)\end{cases},\alpha\leq t\leq\beta;\varphi(x),\psi(x)

均可导,且x=φ(t)x=\varphi(t)严格单调,φ(x)0\varphi'(x)\neq 0,则有dydx=ψ(t)φ(t)\frac{dy}{dx}= \frac{\psi'(t)}{\varphi'(t)}dydx=dydtdxdt\frac{dy}{dx}= \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

高阶导数

定义

y=f(x)y'=f'(x)在区间II内可导,则称y=f(x)y'=f'(x)的导数(f(x))(f'(x))'为函数y=f(x)y=f(x)二阶导数,记作yy''d2ydx2\frac{d^2y}{dx^2},即y=(y)y''=(y')'d2ydx2=ddx(dydx)\frac{d^2y}{dx^2}=\frac{d}{dx}\left( \frac{dy}{dx} \right),即f(x)=limΔx0f(x+Δx)f(x)Δx=limh0f(x+h)f(x)hf''(x)=\lim_{ \Delta x \to 0 } \frac{f'(x+\Delta x)-f'(x)}{\Delta x}=\lim_{ h \to 0 } \frac{f'(x+h)-f'(x)}{h}

二阶及二阶以上的导数称为高阶导数nn阶导数与nn阶导函数分别记为f(n)(x0),y(n)(x0),dnydxnx=x0dnfdxnx=x0f^{(n)}(x_{0}),y^{(n)}(x_{0}),\frac{d^ny}{dx^n}\bigg|_{x=x_{0}}或\frac{d^nf}{dx^n}\bigg|_{x=x_{0}}f(n)(x),y(n)(x),dnydxndnfdxnf^{(n)}(x),y^{(n)}(x),\frac{d^ny}{dx^n}或\frac{d^nf}{dx^n}

运算法则

如果函数u=u(x)u=u(x)v=v(x)v=v(x)都在点xx处具有nn阶导数,那么显然u(x)±v(x)u(x)\pm v(x)也在点xx处具有nn阶导数,且(u±v)(n)=u(n)±v(x)(u\pm v)^{(n)}=u^{(n)}\pm v^{(x)}

但是乘积u(x)v(x)u(x)v(x)nn阶导数并不如此简单

(uv)=uc+uv(uv)=uv+2uv+uv(uv)=uv+3uv+3uv+vu\begin{aligned} (u\cdot v)'&=u'c+uv' \\ (u\cdot v)''&=u''v+2u'v'+uv'' \\ (u\cdot v)'''&=u'''v+3u''v'+3u'v''+v'''u \end{aligned}

用数学归纳法,可得(uv)(n)=Cn0u(n)v+Cn1u(n1)v+Cn2u(n2)v++Cnn1uv(n1)+Cnnuv(n)(u\cdot v)^{(n)}=C^0_{n}u^{(n)}v+C^1_{n}u^{(n-1)}v'+C^2_{n}u^{(n-2)}v''+\cdots+C^{n-1}_{n}u'v^{(n-1)}+C^n_{n}uv^{(n)}
即有求两个函数的高阶导数公式(uv)(n)=k=0nCnku(nk)v(k)(u\cdot v)^{(n)}=\sum^n_{k=0}C^k_{n}u^{(n-k)}v^{(k)}称为莱布尼茨公式,可类比于二项式定理(a+b)n=k=0nCnkankbk(a+b)^n=\sum^n_{k=0}C^k_{n}a^{n-k}b^k

中值定理

费马定理

设函数f(x)f(x)在点x0x_{0}取得极值,若f(x0)f'(x_{0})存在,则必有f(x0)=0f'(x_{0})=0

f(x0)=0f'(x_{0})=0,那么称x0x_{0}是函数f(x)f(x)的一个驻点(或称为稳态点、临界点)费马定理指出:可微函数f(x)f(x)的极值点必为驻点,即是驻点为是极值点的必要条件(不是充要条件)

罗尔中值定理

设函数f(x)f(x)在闭区间[a,b][a,b]上连续,在开区间(a,b)(a,b)内可导,并且满足f(a)=f(b)f(a)=f(b),则ξ(a,b)\exists\xi \in(a,b),使得f(ξ)=0f'(\xi)=0

定理中的三个条件有一个不满足则结论不成立

拉格朗日中值定理

设函数f(x)f(x)在闭区间[a,b][a,b]上连续,在开区间(a,b)(a,b)内可导,则ξ(a,b)\exists\xi \in(a,b),使得f(ξ)=f(b)f(a)baf'(\xi)= \frac{f(b)-f(a)}{b-a}

拉格朗日中值定理是对罗尔中值定理的泛化,去除了f(a)=f(b)f(a)=f(b)的条件

柯西中值定理

设函数f(x)f(x)F(x)F(x)在闭区间[a,b][a,b]上连续,在开区间(a,b)(a,b)内可导,且F(x)F'(x)(a,b)(a,b)内每一点处均不为零,则ξ(a,b)\exists\xi \in(a,b),使得f(b)f(a)F(b)F(a)=f(ξ)F(ξ)\frac{f(b)-f(a)}{F(b)-F(a)}= \frac{f'(\xi)}{F'(\xi)}

柯西中值定理是对拉格朗日中值定理的推广

泰勒公式

如果函数f(x)f(x)在含有x0x_{0}的某个开区间(a,b)(a,b)内具有直到(n+1)(n+1)阶的导数,则对任一x(a,b)x \in(a,b),有f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)+Rn(x)f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+ \frac{f''(x_{0})}{2!}(x-x_{0})^2+\dots+ \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})+R_{n}(x)其中Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1},称为拉格朗日型余项,其中ξ\xixxx0x_{0}间某值

若取x0=0x_{0}=0,则ξ\xi00xx之间,因此可令ξ=θx(0<θ<1)\xi=\theta x(0<\theta<1),从而泰勒公式变成较简单的形式,即所谓麦克劳林公式f(x)=f(0)+f(0)x+f(0)2!x2++f(n)(x)n!xn+f(n+1)(θx)(n+1)!xn+1f(x)=f(0)+f'(0)x+ \frac{f''(0)}{2!}x^2+\dots+\frac{f^{(n)}(x)}{n!}x^n+\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}

在不需要余项的精确表达式时,nn阶泰勒公式也可写为f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)+o[(xx0)n]f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+ \frac{f''(x_{0})}{2!}(x-x_{0})^2+\dots+ \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})+o[(x-x_{0})^n],其中Rn(x)R_{n}(x)的表达式称为佩亚诺型余项

常见泰勒展开式

(1+x)α=1+αx+α(α1)2x2++α(α1)(αn+1)n!xn+o(xn)ex=1+x+x22!+x33!++xnn!+o(xn)ax=1+(lna)x+(lna)22!x2+(lna)33!x3++(lna)nn!xn+o(xn)ln(1+x)=xx22+x33x44++(1)n1xnn+o(xn)loga(1+x)=1lna(xx22+x33+(1)n1xnn)+o(xn)sinx=xx33!+x55!x77!++(1)kx2k+1(2k+1)!+o(x2k+1)cosx=1x22!+x44!x66!++(1)kx2k(2k)!+o(x2k)tanx=x+x33+2x515+17x7315++m=1kcmx2m1+o(x2k1)(通项用 Bernoulli 数表述)secx=1+x22+5x424+61x6720++m=0kE2mx2m(2m)!+o(x2k)arcsinx=x+x36+3x540+5x7112++m=0k(2m)!4m(m!)2(2m+1)x2m+1+o(x2k+1)arccosx=π2arcsinx=π2(x+x36+3x540+)+o(x2k+1)arctanx=xx33+x55x77++m=0k(1)mx2m+12m+1+o(x2k+1)sinhx=x+x33!+x55!+x77!++x2k+1(2k+1)!+o(x2k+1)coshx=1+x22!+x44!+x66!++x2k(2k)!+o(x2k)tanhx=xx33+2x51517x7315++m=1kgmx2m1+o(x2k1)arcsinhx=xx36+3x5405x7112++m=0k(1)m(2m)!4m(m!)2(2m+1)x2m+1+o(x2k+1)arccosh(1+x)=2x(1x12+3x21605x3896+)+o(xk+1/2)arctanhx=x+x33+x55+x77++m=0kx2m+12m+1+o(x2k+1)\begin{aligned} &(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n) \\ &e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + o(x^n) \\ &a^x = 1 + (\ln a)x + \frac{(\ln a)^2}{2!}x^2 + \frac{(\ln a)^3}{3!}x^3 + \cdots + \frac{(\ln a)^n}{n!}x^n + o(x^n) \\ &\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + (-1)^{n-1}\frac{x^n}{n} + o(x^n) \\ &\log_a(1+x) = \frac{1}{\ln a}\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + (-1)^{n-1}\frac{x^n}{n}\right) + o(x^n) \\ &\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + (-1)^{k}\frac{x^{2k+1}}{(2k+1)!} + o(x^{2k+1}) \\ &\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^{k}\frac{x^{2k}}{(2k)!} + o(x^{2k}) \\ &\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots + \sum_{m=1}^k c_m x^{2m-1} + o(x^{2k-1}) \quad(\text{通项用 Bernoulli 数表述}) \\ &\sec x = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \cdots + \sum_{m=0}^k E_{2m}\frac{x^{2m}}{(2m)!} + o(x^{2k}) \\ &\arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \cdots + \sum_{m=0}^k \frac{(2m)!}{4^m (m!)^2 (2m+1)} x^{2m+1} + o(x^{2k+1}) \\ &\arccos x = \frac{\pi}{2} - \arcsin x = \frac{\pi}{2} - \left(x + \frac{x^3}{6} + \frac{3x^5}{40} + \cdots\right) + o(x^{2k+1}) \\ &\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots + \sum_{m=0}^k (-1)^m\frac{x^{2m+1}}{2m+1} + o(x^{2k+1}) \\ &\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots + \frac{x^{2k+1}}{(2k+1)!} + o(x^{2k+1}) \\ &\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots + \frac{x^{2k}}{(2k)!} + o(x^{2k}) \\ &\tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \cdots + \sum_{m=1}^k g_m x^{2m-1} + o(x^{2k-1}) \\ &\operatorname{arcsinh} x = x - \frac{x^3}{6} + \frac{3x^5}{40} - \frac{5x^7}{112} + \cdots + \sum_{m=0}^k (-1)^m\frac{(2m)!}{4^m (m!)^2 (2m+1)} x^{2m+1} + o(x^{2k+1}) \\ &\operatorname{arccosh}(1+x) = \sqrt{2x}\left(1 - \frac{x}{12} + \frac{3x^2}{160} - \frac{5x^3}{896} + \cdots \right) + o(x^{k+1/2}) \\ &\operatorname{arctanh} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots + \sum_{m=0}^k \frac{x^{2m+1}}{2m+1} + o(x^{2k+1}) \end{aligned}