行列式

定义

n2n^{2}个数aijij=1,2,,na_{ij}(i,j=1,2,\dots,n)排列成nnnn列,记为

D=a11a12a1na21a22a2nan1an2annD=\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}

其值定义为j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}}(τ\boldsymbol{\tau}表示排列的逆序数)简记作D=aijn×nD=\begin{vmatrix}a_{ij}\end{vmatrix}_{n\times n}aij1n\begin{vmatrix}a_{ij}\end{vmatrix}^{n}_{1}det(aij)\det(a_{ij})

(1)n阶行列式是一个或一个式子
(2)(1)τ(j1j2jn)a1j1a2j2anjn(-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}}是行列式的一般项,其中a1j1a2j2anjna_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}}表示取自不同行不同列的n个元素的积
(3)j1j2jn\sum_{j_{1}j_{2}\dots j_{n}}表示对所有n元排列j1j2jnj_{1}j_{2}\dots j_{n}对应项求和,共n!n!项,当不会引起混淆时可简写为\sum
(4)当n=1时,规定a=a\begin{vmatrix}a\end{vmatrix}=a

由定义可以得到:
(1)若行列式的某行或某列元素全为0,则该行列式值为0
(2)若行列式中0元素的个数多于n2nn^{2}-n个则行列式的值为0,或者说若行列式中非0元素的个数少于nn个则行列式的值为0

转置行列式

D=aijD=\begin{vmatrix}a_{ij}\end{vmatrix}的行与列互换得到的新行列式称为转置行列式记为DTD^{T},即如果D=a11a12a1na21a22a2nan1an2annD=\begin{vmatrix}a_{11}& a_{12} & \dots & a_{1n} \\a_{21} & a_{22} & \dots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \dots & a_{nn}\end{vmatrix},则DT=a11a21an1a12a22a2na1na2nannD^{T}=\begin{vmatrix}a_{11}& a_{21} & \dots & a_{n1} \\a_{12} & a_{22} & \dots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \dots & a_{nn}\end{vmatrix}

性质

性质一:行列式与它的转置行列式的值相等,即D=DTD=D^{T}

eg:

201141183=211048113=4\begin{vmatrix}2 & 0 & 1 \\1 & -4 & -1 \\-1 & 8 & 3\end{vmatrix}=\begin{vmatrix}2 & 1 & -1 \\0 & -4 & 8 \\1 & -1 & 3\end{vmatrix}=-4

行列式中行与列具有相同的地位,因此行列式的性质凡是对行成立的对列也成立。

证明

D=aij的转置行列式为DT=bij,则bij=aji(i,j=1,2,,n)于是DT=j1j2jn(1)τ(j1j2jn)b1j1b2j2bnjn=j1j2jn(1)τ(j1j2jn)aj11aj22ajnn对换因子的位置使得aj11aj22ajnn=ap11ap22apnn假设共对换了m次,即m次对换将排列j1j2jn变成12n同时也将12n变成了p1p2pn从而τ(j1j2jn)τ(p1p2pn)具有相同的奇偶性于是DT=j1j2jn(1)τ(j1j2jn)aj11aj22ajnn=j1j2jn(1)τ(p1p2pn)a1p1a2p2anpn所以DT=D\begin{aligned} &设D=\begin{vmatrix}a_{ij}\end{vmatrix}的转置行列式为D^{T}=\begin{vmatrix}b_{ij}\end{vmatrix},则\boldsymbol{b_{ij}=a_{ji}}(i,j=1,2,\dots,n)\\&于是D^{T}=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}b_{1j_{1}}b_{2j_{2}}\dots b_{nj_{n}}=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{j_{1}1}a_{j_{2}2}\dots a_{j_{n}n}\\&对换因子的位置使得a_{j_{1}1}a_{j_{2}2}\dots a_{j_{n}n}=a_{p_{1}1}a_{p_{2}2}\dots a_{p_{n}n}\\&假设共对换了m次,即m次对换将排列j_{1}j_{2}\dots j_{n}变成12\dots n\\&同时也将12\dots n变成了p_{1}p_{2}\dots p_{n}\\&从而\tau(j_{1}j_{2}\dots j_{n})与\tau(p_{1}p_{2}\dots p_{n})具有相同的奇偶性\\&于是D^{T}=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{j_{1}1}a_{j_{2}2}\dots a_{j_{n}n}=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(p_{1}p_{2}\dots p_{n})}a_{1p_{1}}a_{2p_{2}}\dots a_{np_{n}}\\&所以D^{T}=D \end{aligned}

性质二:互换行列式中任意两行(列)的位置,行列式变号

eg:

201141183=4  141201183=4\begin{vmatrix}2 & 0 & 1 \\1 & -4 & -1 \\-1 & 8 & 3\end{vmatrix}=-4 \; \begin{vmatrix}1 & -4 & -1 \\2 & 0 & 1 \\-1 & 8 & 3\end{vmatrix}=4

证明:

D=a11a22a1nat1at2atnas1as2asnan1an2ann互换Ds行和第t行,得到新的行列式D1=a11a22a1nas1as2asnat1at2atnan1an2ann由行列式的定义有:D=p1psptpn(1)τ(p1psptpn)a1p1aspsatptanpnD1=p1ptpspn(1)τ(p1ptpspn)a1p1atptaspsanpnτ(p1psptpn)=τ(p1ptpspn)a1p1aspsatpt=a1p1atptaspsD=D1\begin{aligned} &设D=\begin{vmatrix}a_{11} & a_{22} & \dots & \dots & \dots & \dots & a_{1n} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\a_{t1} & a_{t2} & \dots & \dots & \dots & \dots & a_{tn} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\a_{s1} & a_{s2} & \dots & \dots & \dots & \dots & a_{sn} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\a_{n1} & a_{n2} & \dots & \dots & \dots & \dots & a_{nn} \end{vmatrix} \\ &互换D第s行和第t行,得到新的行列式 \\ &D_{1}=\begin{vmatrix}a_{11} & a_{22} & \dots & \dots & \dots & \dots & a_{1n} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\a_{s1} & a_{s2} & \dots & \dots & \dots & \dots & a_{sn} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\a_{t1} & a_{t2} & \dots & \dots & \dots & \dots & a_{tn} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\a_{n1} & a_{n2} & \dots & \dots & \dots & \dots & a_{nn} \end{vmatrix} \\ &由行列式的定义有: \\ &D=\sum_{p_{1}\dots p_{s} \dots p_{t}\dots p_{n}} (-1)^{\tau(p_{1}\dots p_{s} \dots p_{t}\dots p_{n})}a_{1p_{1}}\dots a_{sp_{s}}\dots a_{tp_{t}}\dots a_{np_{n}} \\ &D_{1}=\sum_{p_{1}\dots p_{t} \dots p_{s}\dots p_{n}} (-1)^{\tau(p_{1}\dots p_{t} \dots p_{s}\dots p_{n})}a_{1p_{1}}\dots a_{tp_{t}}\dots a_{sp_{s}}\dots a_{np_{n}} \\ &\because\tau(p_{1}\dots p_{s} \dots p_{t}\dots p_{n})=-\tau(p_{1}\dots p_{t} \dots p_{s}\dots p_{n}) \\ &a_{1p_{1}}\dots a_{sp_{s}}\dots a_{tp_{t}}=a_{1p_{1}}\dots a_{tp_{t}}\dots a_{sp_{s}} \\ &\therefore D=-D_{1} \end{aligned}

推论一:若行列式DD有两行(列)对应元素相同,则D=0D=0

证明:互换DD中相同的两行,有D=DD=0D=-D\Rightarrow D=0

eg:

201201183=0\begin{vmatrix}2 & 0 & 1 \\2 & 0 & 1 \\-1 & 8 & 3\end{vmatrix}=0

性质三: 用数k乘行列式的某一行(列)的各元素,等于用数k乘此行列

eg:

a11a12a1nkas1kas2kasnan1an2ann=ka11a12a1nas1as2asnan1an2ann\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & a_{1n} \\\vdots & \vdots & \vdots & \vdots & \vdots\\ ka_{s1} & ka_{s2} & \dots & \dots & ka_{sn} \\\vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & \dots & a_{nn}\end{vmatrix}=k\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & a_{1n} \\\vdots & \vdots & \vdots & \vdots & \vdots\\ a_{s1} & a_{s2} & \dots & \dots & a_{sn} \\\vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & \dots & a_{nn}\end{vmatrix}

证明:

由行列式的定义:左式=j1j2jn(1)τ(j1j2jn)a1j1kasjsanjn=kj1j2jn(1)τ(j1j2jn)a1j1asjsanjn=右式\begin{aligned} &由行列式的定义: \\ &左式=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}\dots ka_{sj_{s}}\dots a_{nj_{n}} \\ &=k\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}\dots a_{sj_{s}}\dots a_{nj_{n}}=右式 \end{aligned}

推论一:行列式某一行(列)的所有元素的公因子可以提到行列式的外面

eg:

2434=21234\begin{vmatrix}2 & 4\\3 & 4\end{vmatrix}=2\begin{vmatrix}1 & 2 \\3 & 4\end{vmatrix}

推论二:若行列式中有两行(列)的对应元素成比例,则此行列式等于0

eg:

121242183=0\begin{vmatrix}1 & 2 & 1 \\2 & 4 & 2 \\-1 & 8 & 3\end{vmatrix}=0

性质四:若行列式中某一行(列)的元素都是两个数之和,则它等于除改行外其余元素不变的两个行列式之和

eg:

a11a12a1nai1+bi1ai2+bi2ain+binan1an2ann=a11a12a1nai1ai2ainan1an2ann+a11a12a1nbi1bi2binan1an2ann\begin{aligned} &\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & a_{1n}\\\vdots & \vdots & \vdots & \vdots & \vdots \\a_{i1}+b_{i1} & a_{i_{2}}+b_{i2} & \dots & \dots & a_{in}+b_{in} \\\vdots &\vdots & \vdots & \vdots & \vdots \\a_{n1} & a_{n2} & \dots & \dots & a_{nn}\end{vmatrix} \\ &=\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & a_{1n}\\\vdots & \vdots & \vdots & \vdots & \vdots \\a_{i1} & a_{i_{2}} & \dots & \dots & a_{in} \\\vdots &\vdots & \vdots & \vdots & \vdots \\a_{n1} & a_{n2} & \dots & \dots & a_{nn}\end{vmatrix}+\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & a_{1n}\\\vdots & \vdots & \vdots & \vdots & \vdots \\b_{i1} & b_{i2} & \dots & \dots & b_{in} \\\vdots &\vdots & \vdots & \vdots & \vdots \\a_{n1} & a_{n2} & \dots & \dots & a_{nn}\end{vmatrix} \end{aligned}

证明:

左式=j1j2jn(1)τ(j1j2jn)a1j1(ai1+bi1)anjn=j1j2jn(1)τ(j1j2jn)a1j1ai1anjn+j1j2jn(1)τ(j1j2jn)a1j1bi1anjn=右式\begin{aligned} &左式=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}\dots (a_{i1}+b_{i1})\dots a_{nj_{n}} \\ &=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}\dots a_{i1}\dots a_{nj_{n}} \\ &+\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}\dots b_{i1}\dots a_{nj_{n}}=右式 \end{aligned}

(1)该性质可以拓展至n个数之和,即若存在某一行(列)的元素均为n个数之和,那么行列式可以写成n个行列式之和

(2)若行列式的某m行(列)的元素均为n个数之和,那么该行列式可以写成nmn^{m}个行列式之和

性质五:把行列式中某一行(列)k倍加到另一行(列)的对应元素上,行列式不变

eg:

a11a12a1nai1+kaj1ai2+kaj2ain+kajnaj1aj2ajnan1an2ann=a11a12a1nai1ai2ainaj1aj2ajnan1an2ann\begin{aligned} &\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & \dots & \dots & a_{1n} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1}+ka_{j1} & a_{i2}+ka_{j2} & \dots & \dots & \dots & \dots & a_{in}+ka_{jn} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j1} & a_{j2} & \dots & \dots & \dots & \dots & a_{jn} \\\vdots & \vdots &\vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & \dots & \dots & \dots & a_{nn}\end{vmatrix} \\ &=\begin{vmatrix}a_{11} & a_{12} & \dots & \dots & \dots & \dots & a_{1n} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & \dots & \dots & \dots & a_{in} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{j1} & a_{j2} & \dots & \dots & \dots & \dots & a_{jn} \\\vdots & \vdots &\vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & \dots & \dots & \dots & a_{nn}\end{vmatrix} \end{aligned}

计算

三角形行列式——三角化法

下三角形行列式,形如:D=a1100a21a220an1an2annD=\begin{vmatrix} a_{11}&0&\dots&0 \\ a_{21}&a_{22}&\dots&0 \\\vdots &\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix}即主对角线以上的元素全为0的行列式。

求解过程:

D=j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn要使a1j1a2j2anjn不为零,必须j1=1,j2=2,,jn=nτ(12n)=0,D=a11a22ann\begin{aligned} &D=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}} \\ &要使a_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}}不为零,必须\\ &j_{1}=1,j_{2}=2,\dots,j_{n}=n\\ &\because\tau(12\dots n)=0,\therefore D=a_{11}a_{22}\dots a_{nn} \end{aligned}

同理,上三角形行列式D=a11a12a1n0a22a2n00ann=a11a22annD=\begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n} \\ 0&a_{22}&\dots&a_{2n} \\\vdots &\vdots&\ddots&\vdots \\0&0&\dots&a_{nn}\end{vmatrix}=a_{11}a_{22}\dots a_{nn}

对角行列式D=a11000a22000ann=a11a22annD=\begin{vmatrix}a_{11}&0&\dots&0 \\ 0&a_{22}&\dots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\dots&a_{nn}\end{vmatrix}=a_{11}a_{22}\dots a_{nn}

特殊地,副对角行列式Dn=00λ10λ20λn00D_{n}=\begin{vmatrix} 0 & 0 & \cdots &\lambda _{1} \\ 0 & \cdots & \lambda_{2} & 0 \\ \vdots &\text{⋰}& \vdots & \vdots \\ \lambda_{n} & 0 & \cdots & 0 \end{vmatrix}
求解过程:

由行列式的定义Dn=j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn要使得a1j1a2j2anjn不为0,只有j1=n,j2=n1,,jn=1Dn=(1)τ(j1j2jn)an1an1,2a1n=(1)n(n1)2λ1λ2λn\begin{aligned} &由行列式的定义D_{n}=\sum_{j_{1}j_{2}\dots j_{n}} (-1)^{\tau(j_{1}j_{2}\dots j_{n})}a_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}} \\&要使得a_{1j_{1}}a_{2j_{2}}\dots a_{nj_{n}}不为0,只有\\&j_{1}=n, j_{2}=n-1, \dots,j_{n}=1\\&故D_{n}=(-1)^{\tau(j_{1}j_{2}\dots j_{n})a_{n1}a_{n-1,2}\dots a_{1n}}=(-1)^{\frac{n(n-1)}{2}}\lambda_{1}\lambda_{2}\dots\lambda_{n} \end{aligned}

行列式的展开——降阶法

余子式和代数余子式

定义:在Dn=aijD_{n}=\begin{vmatrix}a_{ij}\end{vmatrix}中, 去掉元素aija_{ij}所在的第𝑖行和第𝑗列,
余下的元素按照原来的次序构成的𝑛−1阶行列式, 称为aij\begin{vmatrix}a_{ij}\end{vmatrix}余子式,记作MijM_{ij},称Aij=(1)i+jMijA_{ij}=(-1)^{i+j}M_{ij}aij\begin{vmatrix}a_{ij}\end{vmatrix}代数余子式

eg:

D=a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44M33=a11a12a14a21a22a24a41a42a44,A33=(1)3+3M33=M33M23=a11a12a14a31a32a34a41a42a44,A23=(1)2+3M23=M23\begin{aligned} &在D=\begin{vmatrix}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{vmatrix}中 \\ &M_{33}=\begin{vmatrix}a_{11} & a_{12} & a_{14} \\a_{21} & a_{22} & a_{24}\\ a_{41}& a_{42} & a_{44}\end{vmatrix},A_{33}=(-1)^{3+3}M_{33}=M_{33} \\ &M_{23}=\begin{vmatrix}a_{11} & a_{12} & a_{14} \\a_{31} & a_{32} & a_{34}\\a_{41} & a_{42} & a_{44}\end{vmatrix},A_{23}=(-1)^{2+3}M_{23}=-M_{23} \end{aligned}

1 .行列式DD中每个元素aija_{ij}分别对应着一个余子式MijM_{ij}和一个代数余子式AijA_{ij}

2 . Mij,AijM_{ij},A_{ij}与行列式DD的第ii行和第jj列的元素无关

Dn=aijD_{n}=\begin{vmatrix}a_{ij}\end{vmatrix}中任取kkkk(1kn)(1\leq k\leq n),位于其交叉点的k2k^2个元素按原来的相对位置构成一个kk阶行列式MM,称MMDD一个kk阶子式DD中剩下的所有元素按原来的相对位置构成的nkn-k阶行列式MM^*称为MM的余子式,若MM中元素在DD中的行标和列标分别为i1,i2,,iki_{1},i_{2},\dots,i_{k}j1,j2,,jkj_{1},j_{2},\dots,j_{k}则称(1)(i1+i2++ik)+(j1+j2++jk)M(-1)^{(i_{1}+i_{2}+\dots+i_{k})+(j_{1}+j_{2}+\dots+j_{k})}M^*MM的代数余子式,例如:
$$
\begin{aligned}
&在D=\begin{vmatrix}a_{11} & a_{12} & a_{13} & a_{14} \a_{21} & a_{22} & a_{23} & a_{24} \a_{31} & a_{32} & a_{33} & a_{34} \a_{41} & a_{42} & a_{43} & a_{44}\end{vmatrix}中, \
&M=\begin{vmatrix}a_{11} & a_{13} \a_{21} & a_{23}\end{vmatrix}是D的一个2阶子式\
&M^=\begin{vmatrix}a_{32} & a_{34} \a_{42} & a_{44}\end{vmatrix}是M的余子式 \
&(-1)^(1+2+1+3)M^
=-M^*为M的代数余子式
\end{aligned}
$$

行列式按行(列)展开定理

利用余子式和代数余子式,有

D=a11a12a13a21a22a23a31a32a33=a11a22a23a32a33+a12a21a13a31a33+a13a21a22a31a33=a11A11+a12A12+a13A13\begin{aligned} D&=\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} \\ &=a_{11}\begin{vmatrix}a_{22} & a_{23} \\a_{32} & a_{33}\end{vmatrix}+a_{12}\begin{vmatrix}a_{21} & a_{13}\\a_{31} & a_{33}\end{vmatrix}+a_{13}\begin{vmatrix}a_{21} & a_{22}\\a_{31} & a_{33}\end{vmatrix} \\ &=a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13} \end{aligned}

Dn=aijD_{n}=\begin{vmatrix}a_{ij}\end{vmatrix}等于它的任意一行的各元素与其对应的代数余子式乘积之和,即D=ai1Ai1+ai2Ai2++ainAin(i=1,2,,n)D=a_{i1}A_{i1}+a_{i2}A_{i2}+\dots+a_{in}A_{in}(i=1,2,\dots,n)D=a1jA1j+a2jA2j++anjAnj(j=1,2,,n)D=a_{1j}A_{1j}+a_{2j}A_{2j}+\dots+a_{nj}A_{nj}(j=1,2,\dots,n)

推论:n阶行列式D=aijD=\begin{vmatrix}a_{ij}\end{vmatrix}的某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
ai1Aj1+ai2Aj2++ainAjn=0(ij)a_{i1}A_{j1}+a_{i2}A_{j2}+\dots+a_{in}A_{jn}=0(i\neq j)D=a1iA1j+a2iA2j++aniAnj(ij)D=a_{1i}A_{1j}+a_{2i}A_{2j}+\dots+a_{ni}A_{nj}(i\neq j)

证明:

D=aij按第j行展开,得D=ai1Ai1+ai2Ai2++ainAin=a11a1nai1ainaj1ajnan1annDaik换成ajk(k=1,2,,n),当ij时,可得aj1Ai1+aj2Ai2++ajnAin=a11a1naj1ajnaj1ajnan1ann所以aj1Ai1+aj2Ai2++ajnAin=0\begin{aligned} &将D=\begin{vmatrix}a_{ij}\end{vmatrix}按第j行展开,得 \\ &D=a_{i1}A_{i1}+a_{i2}A_{i2}+\dots+a_{in}A_{in}=\begin{vmatrix}a_{11} & \dots & a_{1n} \\\vdots & & \vdots \\a_{i1} & \dots & a_{in} \\\vdots & & \vdots \\a_{j1} & \dots & a_{jn} \\\vdots & & \vdots\\a_{n1}& \dots & a_{nn}\end{vmatrix} \\ &把D中a_{ik}换成a_{jk}(k=1,2,\dots,n),当i\neq j时,可得 \\ &a_{j1}A_{i1}+a_{j2}A_{i2}+\dots+a_{jn}A_{in}=\begin{vmatrix}a_{11} & \dots & a_{1n} \\\vdots & & \vdots \\a_{j1} & \dots & a_{jn} \\\vdots & & \vdots \\a_{j1} & \dots & a_{jn} \\\vdots & & \vdots\\a_{n1}& \dots & a_{nn}\end{vmatrix} \\ &所以a_{j1}A_{i1}+a_{j2}A_{i2}+\dots+a_{jn}A_{in}=0 \end{aligned}


定理和推论合起来可写作:

k=1naikAjk=Dδijk=1nakiAkj=Dδij\begin{aligned} \sum_{k=1}^n a_{ {\color{red}i}k}A_{ {\color{red}j}k}=D\delta_{ij} \\ \sum_{k=1}^n a_{k{\color{red}i} }A_{k{\color{red}j} }=D\delta_{ij} \end{aligned}

其中δij={1,i=j0,ij\delta_{ij}=\begin{cases}1,i=j\\0,i\neq j\end{cases}为Kronecker符号

降阶法

利用性质2,3,5将行列式的某行(列)化为只有尽量少的非零元(最好只有一个), 再按该行(列)展开

eg1:

计算行列式D=3112513420111533解:D=3112513420111533c4+c3c12c351111113100105530=(1)3+35111111550r2+r1511620550=(1)46255=40.\begin{aligned} 计算行&列式D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix} \\ 解:D &= \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}\xrightarrow[\text{c}_4 + \text{c}_3]{\text{c}_1 - 2\text{c}_3}\begin{vmatrix} 5 & 1 & -1 & 1 \\ -11 & 1 & 3 & -1 \\ 0 & 0 & 1 & 0 \\ -5 & -5 & 3 & 0 \end{vmatrix} \\ &= (-1)^{3+3} \begin{vmatrix} 5 & 1 & 1 \\ -11 & 1 & -1 \\ -5 & -5 & 0 \end{vmatrix} \xrightarrow{\text{r}_2 + \text{r}_1} \begin{vmatrix} 5 & 1 & 1 \\ -6 & 2 & 0 \\ -5 & -5 & 0 \end{vmatrix} = (-1)^4 \begin{vmatrix} -6 & 2 \\ -5 & -5 \end{vmatrix} = 40. \end{aligned}

eg2:

证明:行列式D2n=abababcdcdcd=(adbc)n解一:原式=aab0abcdcd000d+c(1)1+2n00bab0abcdcd0=adD2n2+c(1)1+2nb(1)2nD2n2=(adbc)D2n2=解二:将D2n的第2n行依次与第2n1,2n2,3,2行交换,共换(2n2)次,换至第2行,再将D2n的第2n列依次与第2n1,2n2,3,2列交换,共换(2n2)次,换至第2列,得D2n=(1)2(2n2)ab00cd0000ababcd00cd=D2D2n2=(adbc)D2n2=(adbc)n\begin{aligned} &证明:行列式D_{2n} = \begin{vmatrix} a & & & & & & & b \\ & a & & & & & b & \\ & & \ddots & & & \text{⋰} & & \\ & & & a & b & & & \\ & & & c & d & & & \\ & & \text{⋰} & & & \ddots & & \\ & c & & & & & d & \\ c & & & & & & & d \end{vmatrix} = (ad - bc)^n \\ &解一:原式=a \cdot \begin{vmatrix} a & & & & & b & 0 \\ & \ddots & & & \text{⋰} & & \\ & & a & b & & & \\ & & c & d & & & \\ & \text{⋰} & & &\ddots & & \\ c & & & & & d & 0 \\ 0 & & & & & 0 & d \end{vmatrix} + c \cdot (-1)^{1+2n} \begin{vmatrix} 0 & & & & & 0 & b \\ a & & & & & b & 0 \\ & \ddots & & & \text{⋰} & & \\ & & a & b & & & \\ & & c & d & & & \\ & \text{⋰} & & & \ddots & & \\ c & & & & & d & 0 \end{vmatrix} \\ &= adD_{2n-2} + c \cdot (-1)^{1+2n} \cdot b \cdot (-1)^{2n} D_{2n-2} = (ad - bc)D_{2n-2} = \cdots \\ &解二:将D_{2n}的第2n行依次与第2n-1, 2n-2,\cdots 3,2行交换,共换(2n-2)次,换至第2行, \\ &再将D_{2n}的第2n列依次与第2n-1, 2n-2, \cdots 3,2列交换,共换(2n-2)次,换至第2列,得 \\ &D_{2n} = (-1)^{2(2n-2)} \cdot \begin{vmatrix} a & b & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ c & d & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & a & & & & & b \\ \vdots & \vdots & & \ddots & & & \text{⋰} & \\ \vdots & \vdots & & & a & b & \\ \vdots & \vdots & & & c & d & \\ \vdots & \vdots & & \text{⋰} & & & \ddots & \\ 0 & 0 & c & & & & & d \end{vmatrix} \\ &= D_2 \cdot D_{2n-2} = (ad - bc) \cdot D_{2n-2} = (ad - bc)^n \end{aligned}

加边法

  1. 构造高一阶行列式
    在原 nn 阶行列式基础上,增加一行一列,形成 (n+1)(n+1) 阶行列式 Dn+1D_{n+1}

    • 加边方式需使 Dn+1D_{n+1} 具有易计算结构(如范德蒙德、三角形、对角形等)。
    • 可引入辅助变量(如 yy)或直接添加常数/参数行/列。
  2. 建立与原行列式的关系
    确保原行列式 DnD_nDn+1D_{n+1} 的某个代数余子式(或通过展开可直接提取)。

  3. 计算高阶行列式
    利用其特殊结构(如范德蒙德公式、三角阵行列式=对角积等)求出 Dn+1D_{n+1} 的表达式。

  4. 通过展开或系数比较还原 DnD_n

    • 若引入变量(如 yy),将 Dn+1D_{n+1} 表示为多项式,比较特定幂次项系数
    • 若未引入变量,常通过初等行/列变换化简 Dn+1D_{n+1} 为三角阵,再按加边行/列展开,直接得到 DnD_n

eg:

计算D4=x1b1a2b1a3b1a4b2a1x2b2a3b2a4b3a1b3a2x3b3a4b4a1b4a2b4a3x4,(xiaibi0,i=1,2,3,4).D4=x1b1a2b1a3b1a4b2a1x2b2a3b2a4b3a1b3a2x3b3a4b4a1b4a2b4a3x4=1a1a2a3a40x1b1a2b1a3b1a40b2a1x2b2a3b2a40b3a1b3a2x3b3a40b4a1b4a2b4a3x4=ri+1bi×r1i=1,2,3,41a1a2a3a4b1x1a1b1000b20x2a2b200b300x3a3b30b4000x4a4b4=c1+bixiaibi×ci+1i=1,2,3,41+i=14aibixiaibia1a2a3a40x1a1b100000x2a2b200000x3a3b300000x4a4b4=(1+i=14aibixiaibi)(x1a1b1)(x2a2b2)(x3a3b3)(x4a4b4).\begin{aligned} &计算D_4 = \begin{vmatrix} x_1 & b_1 a_2 & b_1 a_3 & b_1 a_4 \\ b_2 a_1 & x_2 & b_2 a_3 & b_2 a_4 \\ b_3 a_1 & b_3 a_2 & x_3 & b_3 a_4 \\ b_4 a_1 & b_4 a_2 & b_4 a_3 & x_4 \\ \end{vmatrix}, \quad (x_i - a_i b_i \neq 0, i=1,2,3,4).\\ &D_4 = \begin{vmatrix} x_1 & b_1 a_2 & b_1 a_3 & b_1 a_4 \\ b_2 a_1 & x_2 & b_2 a_3 & b_2 a_4 \\ b_3 a_1 & b_3 a_2 & x_3 & b_3 a_4 \\ b_4 a_1 & b_4 a_2 & b_4 a_3 & x_4 \\ \end{vmatrix} = \begin{vmatrix} 1 & a_1 & a_2 & a_3 & a_4 \\ 0 & x_1 & b_1 a_2 & b_1 a_3 & b_1 a_4 \\ 0 & b_2 a_1 & x_2 & b_2 a_3 & b_2 a_4 \\ 0 & b_3 a_1 & b_3 a_2 & x_3 & b_3 a_4 \\ 0 & b_4 a_1 & b_4 a_2 & b_4 a_3 & x_4 \\ \end{vmatrix} \\ &\underset{i=1,2,3,4}{\xlongequal{r_{i+1} - b_i \times r_1}} \begin{vmatrix} 1 & a_1 & a_2 & a_3 & a_4 \\ -b_1 & x_1 - a_1 b_1 & 0 & 0 & 0 \\ -b_2 & 0 & x_2 - a_2 b_2 & 0 & 0 \\ -b_3 & 0 & 0 & x_3 - a_3 b_3 & 0 \\ -b_4 & 0 & 0 & 0 & x_4 - a_4 b_4 \\ \end{vmatrix}\\ &\underset{i=1,2,3,4}{\xlongequal{c_1 + \frac{b_i}{x_i - a_i b_i} \times c_{i+1}}} \begin{vmatrix} 1 + \sum_{i=1}^{4} \frac{a_i b_i}{x_i - a_i b_i} & a_1 & a_2 & a_3 & a_4 \\ 0 & x_1 - a_1 b_1 & 0 & 0 & 0 \\ 0 & 0 & x_2 - a_2 b_2 & 0 & 0 \\ 0 & 0 & 0 & x_3 - a_3 b_3 & 0 \\ 0 & 0 & 0 & 0 & x_4 - a_4 b_4 \\ \end{vmatrix}\\ &= \left(1 + \sum_{i=1}^{4} \frac{a_i b_i}{x_i - a_i b_i}\right) (x_1 - a_1 b_1)(x_2 - a_2 b_2)(x_3 - a_3 b_3)(x_4 - a_4 b_4). \end{aligned}

递推公式法

eg:

计算三对角行列式Dn=ab000cab000ca00000ab000ca解:将行列式按第一列展开,得:Dn=aDn1cb000ca0000ab00ca=aDn1bcDn2, 且 D1=a,D2=a2bc.DnαDn1=β(Dn1αDn2),将它与已知的递推公式比较可得:α+β=a,αβ=bc,α,β是方程x2ax+bc=0的两个根.α,β=a±a24bc2DnαDn1=β(Dn1αDn2)=β2(Dn2αDn3)==βn2(D2αD1)=βn2(a2bcαa)=βn    Dn=βn+αDn1=βn+α(βn1+αDn2)=βn+αβn1+α2Dn2==βn+αβn1++αn2β2+αn1D1=βn+αβn1++αn2β2+αn1(α+β)解得Dn={αn+1βn+1αβ,a24bc(n+1)an2n,a2=4bc其中α,βx2ax+bc=0的两个根\begin{aligned} &计算三对角行列式D_n = \begin{vmatrix} a & b & 0 & \cdots & 0 & 0 \\ c & a & b & \cdots & 0 & 0 \\ 0 & c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ 0 & 0 & 0 & \cdots & c & a \end{vmatrix} \\ &解:将行列式按第一列展开,得:\\ &D_n = aD_{n-1} - c \cdot \begin{vmatrix} b & 0 & \cdots & 0 & 0 \\ c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a & b \\ 0 & 0 & \cdots & c & a \end{vmatrix} = aD_{n-1} - bcD_{n-2}, \text{ 且 } D_1 = a,D_2 = a^2 - bc. \\ &设 D_n - \alpha D_{n-1} = \beta (D_{n-1} - \alpha D_{n-2}), 将它与已知的递推公式比较可得:\\ &\alpha + \beta = a, \alpha\beta = bc, 即\alpha, \beta是方程x^2 - ax + bc = 0的两个根. 即\alpha, \beta = \dfrac{a \pm \sqrt{a^2 - 4bc}}{2} \\ &由D_n - \alpha D_{n-1} = \beta (D_{n-1} - \alpha D_{n-2}) = \beta^2 (D_{n-2} - \alpha D_{n-3}) \\ &= \cdots = \beta^{n-2} (D_2 - \alpha D_1) = \beta^{n-2} (a^2 - bc - \alpha a) = \beta^n \\ &\implies D_n = \beta^n + \alpha D_{n-1} = \beta^n + \alpha(\beta^{n-1} + \alpha D_{n-2}) = \beta^n + \alpha\beta^{n-1} + \alpha^2 D_{n-2} = \cdots = \beta^n + \alpha\beta^{n-1} + \cdots + \alpha^{n-2}\beta^2 + \alpha^{n-1} D_1 \\ &= \beta^n + \alpha\beta^{n-1} + \cdots + \alpha^{n-2}\beta^2 + \alpha^{n-1} (\alpha + \beta) \\ &解得D_n = \begin{cases} \dfrac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, & a^2 \ne 4bc \\ \dfrac{(n+1)a^n}{2^n}, & a^2 = 4bc \end{cases}其中\alpha, \beta 为x^2 - ax + bc = 0的两个根 \end{aligned}

Vandermonde行列式

Dn=1111a1a2a3ana12a22a32an2a1n1a2n1a3n1ann1=1j<in(aiaj)D_{n}=\begin{vmatrix}1 & 1 & 1 & \dots & 1 \\a_{1} & a_{2} & a_{3} & \dots & a_{n} \\a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & \dots & a_{n}^{2} \\\vdots & \vdots & \vdots & \ddots & \vdots \\a_{1}^{n-1} & a_{2}^{n-1} & a_{3}^{n-1} & \dots & a_{n}^{n-1}\end{vmatrix}=\prod_{1\leq j<i\leq n} (a_{i}-a_{j})

Laplace定理

定理:设在DD中取定某k(1kn)k(1\leq k\leq n)行(列),得到的所有kk阶子式为M1,M2,,MtM_{1},M_{2},\dots,M_{t},对应的代数余子式分别为A1,A2,,AtA_{1},A_{2},\dots,A_{t}这里t=Cnkt=C_{n}^{k},则D=M1A1+M2A2++MtAtD=M_{1}A_{1}+M_{2}A_{2}+\dots+M_{t}A_{t}

eg:

如:D=a11a1k0ak1akkc11c1kb11b1ncn1cnkbn1bnnD = \begin{vmatrix} a_{11} & \cdots & a_{1k} & & & \\ \vdots & & \vdots & & \textbf{0} & \\ a_{k1} & \cdots & a_{kk} & & & \\ c_{11} & \cdots & c_{1k} & b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{n1} & \cdots & c_{nk} & b_{n1} & \cdots & b_{nn} \end{vmatrix}.

DD取定前 kk, 得到的非零子式仅有 M=a11a1kak1akkM = \begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix}, 对应的代数余子式为

A=(1)(1+2++k)+(1+2++k)b11b1nbn1bnn=b11b1nbn1bnnA = (-1)^{(1+2+\cdots+k)+(1+2+\cdots+k)} \begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix} = \begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix}

由Laplace定理得 D=MA=a11a1kak1akkb11b1nbn1bnnD = MA = \begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix} \cdot \begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix}

线性方程组

含有nn个未知数的nn个方程的线性方程组的形式是:

{a11x1+a12x2+..+a1nxn=b1a21x1+a22x2+..+a2nxn=b2an1x1+an2x2+..+annxn=bn\begin{cases} a_{11}x_{1}+a_{12}x_{2}+..+a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+..+a_{2n}x_{n}=b_{2} \\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\\ a_{n1}x_{1}+a_{n2}x_{2}+..+a_{nn}x_{n}=b_{n} \end{cases}

其中aij(i,j=1,2,,n)a_{ij}(i,j=1,2,\dots,n)为系数,b1,b2,,bnb_{1},b_{2},\dots,b_{n}为常数项
若常数项b1,b2,,bnb_{1},b_{2},\dots,b_{n}不全为零则称方程组为非齐次线性方程组
若常数项b1,b2,,bnb_{1},b_{2},\dots,b_{n}全为零则称方程组为齐次线性方程组

Cramer法则

如果nn元线性方程组

{a11x1+a12x2+..+a1nxn=b1a21x1+a22x2+..+a2nxn=b2an1x1+an2x2+..+annxn=bn(1)\begin{cases} a_{11}x_{1}+a_{12}x_{2}+..+a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+..+a_{2n}x_{n}=b_{2} \\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\\ a_{n1}x_{1}+a_{n2}x_{2}+..+a_{nn}x_{n}=b_{n} \end{cases} \tag{1}

的系数行列式不等于零,即D=a11a12a1na21a22a2nan1an2ann0D=\begin{vmatrix}a_{11} & a_{12} & \dots & a_{1n} \\a_{21} & a_{22} & \dots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \dots & a_{nn}\end{vmatrix}\neq 0
那么线性方程组(1)有唯一解:x1=D1D,x2=D2D,,xn=DnDx_{1}=\frac{D_{1}}{D},x_{2}=\frac{D_{2}}{D},\dots,x_{n}=\frac{D_{n}}{D}
其中DjD_{j}是将系数行列式DD中第jj列的元素用方程组右段端的常数项代替后所得到的nn阶行列式,即

D=a11a1,ja1na21a2,ja2nan1an,janna11Dj=a11b1a1na21b2a2nan1bnann\begin{array}{} D=\begin{vmatrix}a_{11} & \dots & a_{1,j} & \dots & a_{1n} \\a_{21} & \dots & a_{2,j} & \dots & a_{2n} \\\vdots & & \vdots & & \vdots \\a_{n1} & \dots & a_{n,j} & \dots & a_{nn}\end{vmatrix} \\ \phantom{a_{11} \dots} \downarrow \\ D_{j}=\begin{vmatrix}a_{11} & \dots & b_{1} & \dots & a_{1n} \\a_{21} & \dots & b_{2} & \dots & a_{2n} \\\vdots & & \vdots & & \vdots \\a_{n1} & \dots & b_{n} & \dots & a_{nn}\end{vmatrix} \\ \end{array}

证明:

D中第j列元素的代数余子式A1j,A2j,,Anj依次乘以方程组(1)中的n个方程得:{(a11x1+a12x2+..+a1nxn)A1j=b1A1j(a21x1+a22x2+..+a2nxn)A2j=b2A2j(an1x1+an2x2+..+annxn)Anj=bnAnj再把上述n个方程相加,得(k=1nak1Akj)x1++(k=1nakjAkj)++(k=1naknAkj)=k=1nbkAkjk=1nakjAkj0即有Dxj=Dj(j=1,2,..,n)D0时,方程组有唯一解:x1=D1D,x2=D2D,,xn=DnD\begin{aligned} &用D中第j列元素的代数余子式A_{1j},A_{2j},\dots,A_{nj}依次乘以方程组(1)中的n个方程得: \\ &\begin{cases} (a_{11}x_{1}+a_{12}x_{2}+..+a_{1n}x_{n})A_{1j}=b_{1}A_{1j} \\ (a_{21}x_{1}+a_{22}x_{2}+..+a_{2n}x_{n})A_{2j}=b_{2}A_{2j} \\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\\ (a_{n1}x_{1}+a_{n2}x_{2}+..+a_{nn}x_{n})A_{nj}=b_{n}A_{nj} \end{cases} \\ &再把上述n个方程相加,得 \\ &\left( \sum_{k=1}^n a_{k1}A_{kj} \right)x_{1}+\dots+\left( \sum_{k=1}^n a_{kj}A_{kj} \right)+\dots+\left( \sum_{k=1}^n a_{kn}A_{kj} \right)= \sum_{k=1}^n b_{k}A_{kj} \\ &仅\sum_{k=1}^n a_{kj}A_{kj}\neq 0 \\ &即有Dx_{j}=D_{j}(j=1,2,..,n) \\ &当D\neq 0时,方程组有唯一解: \\ &x_{1}=\frac{D_{1}}{D},x_{2}=\frac{D_{2}}{D},\dots,x_{n}=\frac{D_{n}}{D} \end{aligned}

(1)Cramer法则仅适用于方程个数与未知量个数相等的情形,且要求系数行列式D0D\neq 0

(2)Cramer法则的理论意义是:给出了解与系数的解析关系

(3)用Crammer法则求解线性方程组计算量大,不可取

(4)Cramer法则的逆否命题为:如果n元线性方程组(1)无解或有解但不唯一,则系数行列式DD必为00

齐次线性方程组的解

对于齐次线性方程组

{a11x1+a12x2+..+a1nxn=0a21x1+a22x2+..+a2nxn=0an1x1+an2x2+..+annxn=0(2)\begin{cases} a_{11}x_{1}+a_{12}x_{2}+..+a_{1n}x_{n}=0 \\ a_{21}x_{1}+a_{22}x_{2}+..+a_{2n}x_{n}=0 \\ \dots\dots\dots\dots\dots\dots\dots\dots\dots\\ a_{n1}x_{1}+a_{n2}x_{2}+..+a_{nn}x_{n}=0 \end{cases}\tag{2}

显然x1=x2==xn=0x_{1}=x_{2}=\dots=x_{n}=0一定是(2)的解,称之为齐次线性方程组的零解,若有一组不全为零的数是(2)的解,则称其为齐次线性方程组的非零解

Cramer法则的结论也适用于齐次线性方程组,且由Dj=0D_{j}=0可知当D0D\neq 0时,齐次线性方程组只有零解,即

  1. 如果齐次线性方程组(2)的系数行列式D0D \neq 0,则方程组只有零解
  2. 若齐次线性方程组(2)有非零解则其系数行列式D=0D=0

齐次线性方程组(2)有非零解\Leftrightarrow它的系数行列式D=0D=0

行列式为零的判定条件总结

AAn×nn \times n方阵

一、等价充要条件(核心)

  • AA 不可逆(奇异矩阵)
  • rank(A)<n\operatorname{rank}(A) < n(不满秩)
  • AA行向量组线性相关
  • AA列向量组线性相关
  • 齐次线性方程组Ax=0A\mathbf{x} = \mathbf{0}非零解
  • 00AA 的一个特征值
  • AA 的行(或列)空间维数小于nn

二、常见充分情形

  1. 含零行或零列

(123000456)(102304506)\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 2 \\ 3 & 0 & 4 \\ 5 & 0 & 6 \end{pmatrix}

  1. 两行(或两列)相同

(123123456)(122344566)\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 2 \\ 3 & 4 & 4 \\ 5 & 6 & 6 \end{pmatrix}

  1. 两行(或两列)成比例

(246123011)(132264011)\begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \\ 0 & 1 & 1 \end{pmatrix}

  1. 一行(列)为其他行(列)的线性组合

(123011134)(第3行=第1行+第2行)\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{pmatrix} \quad (\text{第3行} = \text{第1行} + \text{第2行})

(101213314)(第3列=第1列+第2列)\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{pmatrix} \quad (\text{第3列} = \text{第1列} + \text{第2列})

  1. 秩小于阶数

(123246369)(rank=1<3)\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \quad (\operatorname{rank} = 1 < 3)

  1. 特征值含00

(0102)(特征值 0,2)\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \quad (\text{特征值 } 0, 2)

  1. 幂零矩阵

(0100)(A2=0)\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \left( A^2 = 0 \right)